p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.9D4, (C2×D4).121D4, (C2×Q8).112D4, C4.9C42⋊14C2, C4.159(C4⋊D4), C4.C42⋊22C2, C23.13(C4○D4), (C22×C8).88C22, M4(2)⋊4C4⋊20C2, C4.21(C42⋊2C2), C4.102(C4.4D4), (C22×C4).739C23, C42⋊C22.9C2, C23.24D4.2C2, C42.6C22⋊24C2, C42⋊C2.68C22, C4.30(C22.D4), C22.18(C42⋊2C2), C2.15(C23.11D4), (C2×M4(2)).237C22, C22.35(C22.D4), M4(2).8C22.9C2, (C2×C4).1378(C2×D4), (C2×C4).778(C4○D4), (C2×C4○D4).69C22, SmallGroup(128,812)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.9D4
G = < a,b,c,d | a4=b4=d2=1, c4=b2, ab=ba, cac-1=a-1b, dad=ab-1, cbc-1=dbd=b-1, dcd=b-1c3 >
Subgroups: 200 in 95 conjugacy classes, 36 normal (34 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4.D4, C4.10D4, D4⋊C4, Q8⋊C4, C4≀C2, C4⋊C8, C42⋊C2, C22×C8, C2×M4(2), C2×C4○D4, C4.9C42, C4.C42, M4(2)⋊4C4, M4(2).8C22, C23.24D4, C42⋊C22, C42.6C22, C42.9D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C4⋊D4, C22.D4, C4.4D4, C42⋊2C2, C23.11D4, C42.9D4
Character table of C42.9D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | |
size | 1 | 1 | 2 | 2 | 2 | 8 | 1 | 1 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | 2 | -2 | 0 | 2 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 2 | -2 | 0 | 2 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | complex lifted from C4○D4 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | complex lifted from C4○D4 |
ρ15 | 2 | 2 | -2 | 2 | -2 | 0 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ16 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | -2i | 0 | complex lifted from C4○D4 |
ρ17 | 2 | 2 | -2 | 2 | -2 | 0 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | -2i | complex lifted from C4○D4 |
ρ19 | 2 | 2 | -2 | -2 | 2 | 0 | 2 | 2 | -2 | -2 | 2 | -2i | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 2i | 0 | complex lifted from C4○D4 |
ρ21 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 2i | complex lifted from C4○D4 |
ρ22 | 2 | 2 | -2 | -2 | 2 | 0 | 2 | 2 | -2 | -2 | 2 | 2i | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ83 | 2ζ85 | 2ζ8 | 2ζ87 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ8 | 2ζ87 | 2ζ83 | 2ζ85 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ87 | 2ζ8 | 2ζ85 | 2ζ83 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ85 | 2ζ83 | 2ζ87 | 2ζ8 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 8 32 27)(2 30 29 7)(3 6 26 25)(4 28 31 5)(9 10 22 19)(11 16 24 17)(12 20 21 15)(13 14 18 23)
(1 7 5 3)(2 4 6 8)(9 15 13 11)(10 12 14 16)(17 19 21 23)(18 24 22 20)(25 27 29 31)(26 32 30 28)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 13)(2 10)(3 11)(4 16)(5 9)(6 14)(7 15)(8 12)(17 27)(18 28)(19 25)(20 26)(21 31)(22 32)(23 29)(24 30)
G:=sub<Sym(32)| (1,8,32,27)(2,30,29,7)(3,6,26,25)(4,28,31,5)(9,10,22,19)(11,16,24,17)(12,20,21,15)(13,14,18,23), (1,7,5,3)(2,4,6,8)(9,15,13,11)(10,12,14,16)(17,19,21,23)(18,24,22,20)(25,27,29,31)(26,32,30,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,13)(2,10)(3,11)(4,16)(5,9)(6,14)(7,15)(8,12)(17,27)(18,28)(19,25)(20,26)(21,31)(22,32)(23,29)(24,30)>;
G:=Group( (1,8,32,27)(2,30,29,7)(3,6,26,25)(4,28,31,5)(9,10,22,19)(11,16,24,17)(12,20,21,15)(13,14,18,23), (1,7,5,3)(2,4,6,8)(9,15,13,11)(10,12,14,16)(17,19,21,23)(18,24,22,20)(25,27,29,31)(26,32,30,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,13)(2,10)(3,11)(4,16)(5,9)(6,14)(7,15)(8,12)(17,27)(18,28)(19,25)(20,26)(21,31)(22,32)(23,29)(24,30) );
G=PermutationGroup([[(1,8,32,27),(2,30,29,7),(3,6,26,25),(4,28,31,5),(9,10,22,19),(11,16,24,17),(12,20,21,15),(13,14,18,23)], [(1,7,5,3),(2,4,6,8),(9,15,13,11),(10,12,14,16),(17,19,21,23),(18,24,22,20),(25,27,29,31),(26,32,30,28)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,13),(2,10),(3,11),(4,16),(5,9),(6,14),(7,15),(8,12),(17,27),(18,28),(19,25),(20,26),(21,31),(22,32),(23,29),(24,30)]])
Matrix representation of C42.9D4 ►in GL4(𝔽17) generated by
0 | 0 | 15 | 6 |
0 | 0 | 0 | 9 |
9 | 7 | 0 | 0 |
0 | 2 | 0 | 0 |
13 | 9 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 13 | 9 |
0 | 0 | 0 | 4 |
0 | 0 | 2 | 10 |
0 | 0 | 15 | 15 |
8 | 10 | 0 | 0 |
9 | 9 | 0 | 0 |
2 | 10 | 0 | 0 |
15 | 15 | 0 | 0 |
0 | 0 | 2 | 10 |
0 | 0 | 15 | 15 |
G:=sub<GL(4,GF(17))| [0,0,9,0,0,0,7,2,15,0,0,0,6,9,0,0],[13,0,0,0,9,4,0,0,0,0,13,0,0,0,9,4],[0,0,8,9,0,0,10,9,2,15,0,0,10,15,0,0],[2,15,0,0,10,15,0,0,0,0,2,15,0,0,10,15] >;
C42.9D4 in GAP, Magma, Sage, TeX
C_4^2._9D_4
% in TeX
G:=Group("C4^2.9D4");
// GroupNames label
G:=SmallGroup(128,812);
// by ID
G=gap.SmallGroup(128,812);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,422,387,58,1018,248,1411,4037,1027]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^4=b^2,a*b=b*a,c*a*c^-1=a^-1*b,d*a*d=a*b^-1,c*b*c^-1=d*b*d=b^-1,d*c*d=b^-1*c^3>;
// generators/relations
Export